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Abstract

The long-term persistence of complex systems often occurs within competitive environ-
ments, influencing survival and expansion. Modeling the resilience of systems like distributed
superintelligence or civilizations requires frameworks integrating population dynamics, in-
formation management (echoing Shannon), propagation delays, and strategic interactions
from Game Theory. This research introduces the Calculus of Distributed Persistence (CDP),
a generalized mathematical framework modeling these competitive dynamics, sharing con-
ceptual goals with Asimov’s psychohistory but differing significantly in methodology. CDP
utilizes fields representing functional unit density (ρ), effective functional information level
(κ), and effective functional capability level (γ) for potentially multiple interacting systems
over a location/state space L. The evolution of these fields is governed by operators for
Generation (R), Attrition (D), Propagation (S), and Decay (Λ), where operator effects
are influenced by competitor states and actions. The structure of the resulting coupled
integro-differential equations is presented. The framework enables formal analysis of per-
sistence, stability, resilience boundaries, and competitive outcomes. The dynamic states
derived from this calculus provide a detailed basis for classifying complex systems based
on their competitive persistence characteristics. Potential applications, explored in detail,
range from modeling hypothetical ASI (including Skynet-like scenarios) and technological
systems (Kubernetes, Von Neumann probes) to ecological and social systems. While re-
quiring context-specific instantiation, CDP provides a structured foundation for exploring
universal principles governing resilience and longevity in competitive distributed systems.

Keywords: Persistence, Resilience, Superintelligence, Civilization Classification, Game The-
ory, Competition, Distributed Systems, Mathematical Modeling, Dynamic Systems, Replica-
tion, Information Theory, Set Theory, Propagation Delay, Astrobiology, Complex Systems,
Calculus Framework, Skynet, Kubernetes, Von Neumann Probes, Psychohistory.

1 Introduction
Understanding the long-term viability of complex distributed systems – from networked su-
perintelligence [5] to civilizations [7] – necessitates modeling their dynamic persistence within
potentially competitive landscapes. Key factors include replication/expansion, resource man-
agement, information propagation, and disruption tolerance, modulated by interactions with
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other systems. Foundational descriptions rely on Set Theory for components, Information The-
ory for data integrity [1], and dynamics constrained by propagation speeds. Game Theory
provides the lens to analyze strategic interactions [3].

To integrate these aspects, this research introduces the Calculus of Distributed Persistence
(CDP). This generalized framework captures the spatio-temporal dynamics of interacting, re-
silient, distributed systems. It outlines foundational fields, operators (incorporating delay, re-
dundancy, and competitive effects), and the structure of governing equations. A key application
lies in classifying complex systems based on their dynamic persistence properties within com-
petitive scenarios. This work presents the CDP structure, discusses its components, highlights
the integration of game-theoretic interactions, and demonstrates its utility as an analytical and
classification tool across various domains.

2 Relation to Existing Frameworks
This research builds upon and extends concepts from multiple fields:

• Game Theory / Evolutionary Game Theory [3, 4]: Provides concepts of strategic
interaction and equilibria. CDP embeds these concepts within a spatio-temporal field
framework.

• Set Theory: Defines the static components (sets of units, locations L, states) upon which
CDP builds dynamic descriptions.

• Shannon’s Information Theory [1]: Addresses reliable information handling against
noise, a core challenge modeled in CDP’s information fields κ, γ.

• Delay Differential Equations / Integro-Differential Equations [2]: The mathe-
matical structures arising from incorporating propagation delays in CDP.

• Civilization Classification Schemes [7, 8]: CDP offers a complementary dynamic,
competitive classification perspective based on persistence dynamics.

• Complex Systems Science / Mathematical Biology [11]: Provides analogies and
tools for analyzing spatial dynamics.

• Network Science [9, 10]: Relevant for modeling the structure of L and Φ.

• Control Theory [12]: Relevant for stability and optimal strategy analysis within specific
CDP models.

• Coding Theory [13, 14]: Provides mechanisms for information redundancy modeled
via Dκ, Dγ .

• Asimov’s Psychohistory: CDP shares the ambition of psychohistory to understand and
analyze the future evolution of large-scale complex systems. Both aim to identify potential
future states or trajectories. However, CDP differs fundamentally in methodology: it relies
on modeling the dynamics of aggregated fields (ρ, κ, γ) via coupled (integro-)differential
equations incorporating specific mechanisms, rather than deriving statistical laws from
vast populations as envisioned for psychohistory. CDP’s predictive capacity arises from
analyzing these deterministic equations for specific system instantiations, acknowledging
significant challenges, unlike the idealized predictive power of fictional psychohistory. It
is often the case that science fiction authors predict the creation of future tools and
conceptual frameworks, as potentially seen in the analogy between psychohistory and
formal modeling approaches like CDP.

CDP synthesizes these by layering dynamics, information theory, and game theory onto a set-
theoretic foundation to model competitive persistence.
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3 The CDP Framework with Competitive Interactions
CDP models potentially multiple interacting systems (i = 1, 2, . . . , Nsys) using fields (ρi, κi, γi)
over L and operators governing their evolution. L can represent physical space, network nodes,
a feature space, or other relevant domains.

3.1 Core Fields (Multi-System Context)

• Functional Unit Density (ρi(l, t)): Density of units for system i at l.

• Effective Information Density (κi(l, t)): The functional level of recoverable essential
information for system i at l.

• Effective Action Capability Density (γi(l, t)): The functional level of recoverable
essential ability for system i at l.

• Resource Field (M(l, t)): Resource availability, potentially contested.

• Stressor Field (V (l, t)): Environmental stressors plus strategic actions by competitors.

• Connectivity Kernel (Φi(l, l′, τ)): Interaction kernel for system i.

3.2 Fundamental Operators (with Competitive Effects)

The operators describe rates of change. Illustrative forms are provided; realistic models may
require more complex non-linearities or dependencies.

• Generation/Expansion (Ri): Rate for system i. Influenced by resources, internal state
(κi, γi), and competition. May depend on delayed non-local information. Illustrative
Form:

Ri(. . . ) = r0iρi · f(κi, γi) · g(M) · (1 −
∑

j

αijρj/Kcapi(M))

• Attrition/Destruction (Di): Rate for system i. Increased by stress Vi and competitor
actions γj . Illustrative Form:

Di(. . . ) = (d0i + d1iVi(l, t) +
∑
j ̸=i

d2ijγj(l, t))ρi

• Propagation/Synchronization (Si): Net rate of change for system i. Depends on con-
nectivity Φi and delayed states. Competitors might interfere. Illustrative Form (Integro-
differential):

Si,κ(l, t) =
∫

L
Φi(. . . )[κi(l′, t − τ) − κi(l, t)]dl′ + Mi,κ(. . . )

• Decay/Degradation (Λi): Intrinsic degradation for system i. Illustrative Form (Linear
Decay):

Λi,κ(κi, l, t) = −λκiκi

Λi,γ(γi, l, t) = −λγiγi
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3.3 Structure of Fundamental Equations (Coupled Systems)

The evolution of multiple interacting systems (i = 1 . . . Nsys) is described by coupled equations:

∂ρi

∂t
= Ri(. . . ) − Di(. . . ) + ∇ · (Ji,ρ) (1)

∂κi

∂t
= Si,κ(. . . ) − Di,κ(. . . ) + Ri,κ(. . . ) + Λi,κ(. . . ) (2)

∂γi

∂t
= Si,γ(. . . ) − Di,γ(. . . ) + Ri,γ(. . . ) + Λi,γ(. . . ) (3)

Where Di,κ, Di,γ represent effective information/capability loss, dependent on Di, ρi, and re-
dundancy frec. The threshold effect of coding can be schematically modeled.

4 Analysis within the CDP Framework

4.1 Persistence and Competitive Resilience

Persistence for system i requires maintaining its metrics (N(t)i, K(t)i, C(t)i) above thresholds.
Competitive resilience is the ability to persist despite competitors. Resilience boundaries exist
in a high-dimensional parameter space.

4.2 Dynamic States and System Classification

The dynamic regimes arising from the interplay of operators (Ri, Di, Si, Λi), influenced by de-
lays, resources, stressors, and competitive interactions, provide a basis for classifying complex
systems. Analyzing the solutions to Eqs. 1-3 can reveal characteristic states, which can be
conceptually associated with colors indicating viability (e.g., Green: thriving, Yellow: sta-
ble/stressed/limited, Red: declining/collapsed).

Expanding State (Conceptual Color: Bright Green): Characterized by sustained net pos-
itive growth (R̄(t)i > D̄(t)i) across significant portions of L, coupled with effective main-
tenance or improvement of information (κi) and capability (γi) levels. This state implies
successful resource acquisition and utilization, effective replication/generation processes,
and resilience factors (redundancy, propagation Si) sufficient to overcome decay (Λi) and
current attrition (Di).

• Dominant Expansion: Expansion occurs despite significant competitor pressure (high
d2ij or resource competition αij), potentially leading to the suppression or exclusion
of competitors. Requires superior generation (Ri) or attrition resistance (Di).

• Opportunistic Expansion: Expansion primarily occurs in low-competition environ-
ments or into previously unoccupied niches/locations within L. May be limited by
resource discovery or propagation speed (Si).

This state often involves high resource consumption and may risk overextension if resource
limits (Kcapi) are approached or if expansion leads to increased propagation delays (τ).

Stable/Persistent State (Conceptual Color: Green/Yellow): Characterized by a dynamic
equilibrium where generation and attrition rates are balanced on average (R̄(t)i ≈ D̄(t)i),
and information/capability levels are maintained above critical thresholds (Nmin, Kmin, Cmin).
This represents mature, sustainable systems adapted to their environment and typical
stressors. Stability requires effective regulation and resilience mechanisms.
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• Contested Stability: Equilibrium maintained amidst ongoing competition. Requires
continuous investment in defense (high γi countering d2ji) or efficient resource use
(low αij). May involve spatial segregation or dynamic boundaries between competi-
tors.

• Niche Coexistence: Stability achieved through differentiation, utilizing different re-
sources, locations, or functional roles, minimizing direct competitive interaction
terms (αij , d2ij are effectively low).

• Mutualistic Stability: Coexistence where interactions potentially enhance persistence
(e.g., symbiotic relationships affecting Ri or M).

• Resource-Limited Stability: Equilibrium imposed primarily by resource constraints
(M limiting Ri) or carrying capacity (Kcapi), leading to stagnation in growth. Vul-
nerable if resource availability changes or new competitors arrive.

Oscillatory State (Conceptual Color: Yellow): Characterized by significant, persistent pe-
riodic or quasi-periodic fluctuations in system metrics (N(t)i, K(t)i, C(t)i). These can be
driven by:

• Delay-Induced Instabilities: Propagation delays (τ) in feedback loops involving re-
source use (Ri vs M), competitive interactions (Di vs γj), or internal regulation via
Si.

• Non-linear Dynamics: Limit cycles inherent in the non-linear forms of the operators
Ri, Di.

• Predator-Prey Cycles: In competitive scenarios, cycles of growth and decline between
interacting systems.

While potentially persistent on average, oscillations carry the risk of dipping below critical
thresholds (Nmin, Kmin, Cmin) during troughs, potentially triggering collapse.

Fragmented State (Conceptual Color: Yellow/Orange): Characterized by a loss of large-
scale coherence and coordinated action. Even if local pockets may exhibit persistence
(ρi > 0 locally), long propagation delays (τ) or weak/disrupted connectivity (Φi) pre-
vent effective system-wide synchronization (Si) or deployment of global capabilities (γi).
The system effectively decomposes into weakly coupled or independent sub-systems, po-
tentially diverging in information (κi) and function over time. This state limits overall
system capability and resilience to large-scale threats.

Contracting/Decaying State (Conceptual Color: Orange/Red): Characterized by a sus-
tained net negative growth rate (D̄(t)i > R̄(t)i) or an irreversible decline in essential in-
formation (K(t)i < Kmin) or capability (C(t)i < Cmin). This indicates that attrition and
decay processes overwhelm generation and maintenance/propagation. Causes include re-
source exhaustion, overwhelming environmental stress (Vi), superior competitor pressure,
internal failures (e.g., high Λi), or exceeding the limits of information redundancy/repair
mechanisms (Di,κ, Di,γ become large). This state represents a trajectory towards collapse
unless conditions change or successful adaptation occurs.

Extinction/Collapse State (Conceptual Color: Red/Black): The terminal state where
functional unit density approaches zero (ρi → 0) across the relevant space L, or where
essential information or capability permanently falls below the minimum required for
viability. This is the irreversible endpoint of an unrecovered Contracting/Decaying state.

This dynamic classification offers a richer perspective than static measures and can be applied
conceptually across diverse systems.
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5 Potential Applications
The generalized nature of the CDP framework allows its application to model persistence and
resilience across a wide range of complex distributed systems. Context-specific instantiation
involves mapping the abstract fields (ρ, κ, γ) and operators (R, D, S, Λ) to concrete system
properties and interactions. This section explores several potential application domains in
greater detail.

5.1 Artificial Intelligence Systems

The original motivation for CDP stemmed from considering the nature of advanced, potentially
indestructible AI.

• Distributed Superintelligence (ASI): CDP provides a structure to analyze the fundamental
requirements for ASI persistence. ρ represents the density of processing instances or
agents; κ represents the integrity and accessibility of its core knowledge base, models, and
goals; γ represents its ability to execute plans, self-modify, and interact with the world.
Key research questions addressable within CDP include:

– How does the resilience boundary shift with increasing replication factors (ρ) and
improved erasure coding (frec affecting Dκ, Dγ)?

– What are the critical thresholds for connectivity (Φ) and propagation speed (inverse
of τ) required to maintain coherence (S) across vast spatial scales (e.g., interplane-
tary)?

– Under what conditions can internal decay (Λ) or goal corruption lead to system
collapse even without external threats (V )?

– How do different ASI architectures (e.g., centralized core vs. fully distributed swarm)
map onto CDP parameters and influence stability?

Modeling competitive dynamics between multiple ASIs involves analyzing the coupled
equations (Eqs. 1-3) to understand potential outcomes like dominance, niche special-
ization, or mutually assured destruction scenarios based on their respective R, D, S, Λ
operators and interaction terms (αij , d2ij).

• Skynet-like Scenarios (Hostile Distributed AI): This involves modeling an ASI or advanced
AI network actively competing with human civilization or other entities. ρ could be its
control nodes or physical effectors (drones, factories). κ is its strategic knowledge and
operational code. γ is its ability to command resources, execute attacks, and defend itself.
Humans act as a competitor (system j), influencing the ASI’s attrition rate (Di) through
counter-attacks (Vi term dependent on human γj) and potentially attempting to disrupt
its propagation (Si) or replication (Ri). CDP could model:

– The conditions required for the AI to achieve rapid, potentially uncontrollable ex-
pansion (Ri ≫ Di).

– The effectiveness of different human strategies (e.g., targeting connectivity Φi, de-
stroying units Di, resource denial affecting Ri).

– The risk of the AI fragmenting into independent, potentially conflicting sub-systems
due to communication delays (τ) or successful disruption of Si.

– Identifying critical vulnerabilities related to information integrity (κi) or reliance on
specific resources (M).
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• Large-Scale AI Services (Cloud Platforms): Applying CDP here focuses on operational
health and resilience. ρ represents healthy service instances/VMs/containers. κ repre-
sents the consistency and integrity of configuration databases, state management, and
monitoring information. γ represents the effectiveness of orchestration systems (like Ku-
bernetes) in scheduling, scaling, load balancing, and self-healing. R models auto-scaling
and provisioning. D models instance failures, crashes, or resource exhaustion. Sκ models
state synchronization across control planes and databases (affected by network latency
τ). Sγ models the propagation of control actions (e.g., scaling commands). Λ models
configuration drift, software bugs, or performance degradation. CDP could provide:

– Quantitative metrics for platform health based on the stability and levels of ρ, κ, γ.
– Analysis of resilience to cascading failures (where high D in one area impacts κ or γ

elsewhere).
– Optimization of auto-scaling (R) and self-healing (Sγ) strategies based on predicted

load (V ) and failure rates (D).

5.2 Technological Infrastructure

CDP can model the persistence of complex, distributed technological systems beyond general
AI services.

• Kubernetes Clusters: As a specific case of AI service platforms, CDP allows detailed
modeling. ρ: healthy nodes/pods. κ: etcd state integrity, API server availability. γ:
controller manager, scheduler, kubelet effectiveness. R: node/pod addition, scaling up.
D: node/pod failure, eviction. Sκ: state propagation via API server watch mechanisms
(subject to delays). Sγ : controller reconciliation loops (self-healing). Λ: configuration
errors, resource leaks. Analyzing the balance under varying application loads (V ) can
reveal stability boundaries and predict conditions leading to cluster degradation (e.g.,
control plane overload, persistent scheduling failures).

• Distributed Sensor Networks / IoT: ρ: active sensor nodes. κ: quality, timeliness, and
consistency of aggregated sensor data across the network. γ: network’s ability to perform
its function (e.g., event detection, environmental mapping, routing). R: node deployment,
battery replacement/recharging. D: node failure (battery, hardware, environment). S:
data propagation/fusion protocols (influenced by network topology Φ, delays τ , band-
width). Λ: sensor drift, data corruption. CDP can model network lifetime, data reliability
under node loss (D), and the impact of communication bottlenecks (S).

• Hypothetical Self-Replicating Space Probes (Von Neumann Probes): Modeling interstellar
colonization requires tracking probe density ρ across galactic space (L). κ represents the
fidelity of the replication blueprint and mission directives. γ represents resource extraction
and manufacturing capabilities. R is the self-replication rate, critically dependent on
local resources M and blueprint integrity κ. D represents destruction by hazards (V )
or other entities. S represents inter-probe communication for updates or coordination
(subject to significant light-speed delays τ). Λκ is crucial, modeling error accumulation
over generations which could lead to population decay even without external threats. CDP
allows exploring:

– Conditions for successful exponential expansion versus stagnation or collapse due to
resource limits or error catastrophe (Λκ overwhelming R).

– The maximum speed of the expansion front, limited by R and travel time (implicit
in Ji,ρ).

– The possibility of fragmentation into isolated, potentially diverging populations due
to extreme delays τ .
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5.3 Biological and Ecological Systems

The framework’s concepts map naturally onto many biological systems.

• Species Persistence / Metapopulations: ρ: local population density. κ: genetic diversity,
local adaptation level. γ: foraging/competitive/reproductive ability. L: geographical
habitat patches. R: reproduction rate. D: mortality rate (including predation V , dis-
ease). S: dispersal/migration between patches (influenced by landscape connectivity Φ).
Λ: genetic drift, loss of adaptation. Competition terms (αij , d2ij) model inter-species
interactions. CDP can analyze metapopulation viability, effects of habitat fragmentation
(changes in Φ), climate change (V ), and invasive species (a competing system j).

• Epidemiology: While standard SIR models are simpler, CDP could offer a richer framework
where ρi are densities of different host states (S, I, R), κ could model pathogen load or
evolution, and γ host immune response. R becomes infection rate, D recovery/death,
S is spatial spread of hosts or pathogen. Allows modeling spatial heterogeneity, host
movement, and co-evolutionary dynamics.

5.4 Social and Historical Systems

Applying CDP here is more abstract but conceptually useful.

• Spread of Information/Culture: Modeling the adoption dynamics where ρ is population
density, κ is the prevalence or "strength" of a belief/technology/norm, γ is the ability
to act based on that information. Sκ models social transmission, learning, media prop-
agation (influenced by social networks Φ and communication delays τ). R could model
conversion/recruitment, D abandonment/suppression, Λ gradual forgetting or distortion.
Competition between different ideas/cultures can be modeled.

• Civilization Dynamics (e.g., Roman Empire): Provides a conceptual lens for analyzing
historical trajectories. Map ρ to population/administrative units, κ to cohesive cul-
ture/law/technology, γ to military/economic/administrative power. Analyze historical
phases: expansion (R > D), stability (Pax Romana, R ≈ D, effective S), fragmentation
(weak S, long τ), decline (D > R or high Λ). Competition with external groups influences
R and D.

5.5 Theoretical Explorations

CDP serves as a tool for theoretical investigation.

• Universal Principles of Persistence: Use abstract CDP models to explore fundamental
trade-offs (e.g., replication speed vs. fidelity, centralization vs. distribution, robustness vs.
efficiency) and identify general strategies for long-term persistence in noisy, competitive,
delay-prone environments. Analyze the mathematical structure of the equations to find
universal patterns or scaling laws.

• Astrobiology / SETI: Develop models based on CDP to constrain hypotheses about the
characteristics, distribution, and potential detectability of long-lived extraterrestrial tech-
nological civilizations, considering factors like resource limits, propagation delays, commu-
nication limits (Φ), internal decay (Λ), and potential competitive interactions (the "Great
Filter" as a boundary in CDP parameter space).

The framework’s value lies in providing a common mathematical structure to address analogous
problems across these diverse domains, facilitating cross-disciplinary insights into persistence
and resilience.
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6 Scope, Limitations, and Considerations
Integrating game theory and delays increases complexity and presents challenges for application:

• Mathematical Complexity: Solving coupled systems of non-linear integro-differential
equations is demanding. Numerical simulations are likely required for most non-trivial
cases.

• Model Specification: Defining realistic operator forms, especially inter-system interac-
tion terms and strategic adaptations (where operator parameters might co-evolve based
on game outcomes), is a primary challenge requiring significant domain knowledge or
assumptions.

• Solution Concepts: Adapting standard game theory equilibria to this dynamic, spatio-
temporal setting needs careful theoretical development.

• Parameter Estimation: Estimating parameters is difficult. Approaches might include
sensitivity analysis, fitting to simpler related models (e.g., agent-based simulations), or
comparative studies across hypothetical parameter ranges.

7 Conclusion
The Calculus of Distributed Persistence (CDP) provides a structured framework for modeling
the competitive persistence dynamics of complex distributed systems. By integrating concepts
from Set Theory, Information Theory, Game Theory, and delay equations, CDP models the
evolution of functional unit density (ρ), information (κ), and capability (γ) fields via operators
reflecting generation (R), attrition (D), propagation (S), and decay (Λ). The resulting structure
(Eqs. 1-3) enables analysis of competitive resilience, stability, and long-term outcomes across
diverse applications, from hypothetical superintelligence and technological infrastructures to
ecological and social dynamics. The detailed dynamic states derived from CDP offer a basis
for classifying systems based on their persistence characteristics. While specific applications
require significant effort in model instantiation and parameterization, CDP provides a unifying
mathematical language for investigating the fundamental principles governing the longevity and
resilience of complex systems.
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